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SUMMARY

The spatial resolutions of numerical atmospheric and oceanic circulation models have steadily increased
over the past decades. Horizontal grid spacing down to the order of 1 km is now often used to resolve cloud
systems in the atmosphere and sub-mesoscale circulation systems in the ocean. These fine resolution
models encompass a wide range of temporal and spatial scales, across which dynamical and statistical
properties vary. In particular, dynamic flow systems at small scales can be spatially localized and tempo-
rarily intermittent. Difficulties of current data assimilation algorithms for such fine resolution models are
numerically and theoretically examined. An analysis shows that the background error correlation length
scale is larger than 75 km for streamfunctions and is larger than 25 km for water vapor mixing ratios, even
for a 2-km resolution model. A theoretical analysis suggests that such correlation length scales prevent the
currently used data assimilation schemes from constraining spatial scales smaller than 150 km for
streamfunctions and 50 km for water vapor mixing ratios. These results highlight the need to fundamentally
modify currently used data assimilation algorithms for assimilating high-resolution observations into the
aforementioned fine resolution models. Within the framework of four-dimensional variational data assim-
ilation, a multiscale methodology based on scale decomposition is suggested and challenges are discussed.
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1. INTRODUCTION

The continuing growth in available computational power allows numerical atmospheric and oceanic
circulation models to increase steadily in spatial resolution. Horizontal grid spacings down to the
order of 1 km are now often used in atmospheric and oceanic models. In atmospheric applications,
this resolution directly resolves cloud systems and thus improves representation of mesoscale cloud
and precipitation systems as well as their interactions with large-scale circulations [1, 2]. In oceanic
applications, this resolution resolves sub-mesoscale systems that are important to the dynamics of
ocean circulation, particularly for energy cascade and dissipation, restratification of vertical density
structures, and material transports [3–5]. Parallel to this, as radar and remote sensing technologies
have advanced, the number, type, and quality of observations have increased. The expansion of
radar networks and increase in the number and quality of satellite data products afford high-
resolution observations.
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Assimilation of high-resolution observations into fine resolution models has been intensively
investigated in recent years. In these investigations, data assimilation algorithms use the ensemble
Kalman filter (EnKF) [6–8], three-dimensional variational data assimilation (3DVAR)[9–11], and
four-dimensional variational data assimilation (4DVAR) [12, 13], where 3DVAR is still primarily
used in operational centers for regional fine resolution models. All of these algorithms are
formulated using the framework of minimum error variance or maximum likelihood estimation
(or maximum posterior estimation in statistics), known as optimal estimation [14]. These algorithms
are equivalent to one another when the optimal estimation problems are accurately solved [15–17].
However, the implementation of the aforementioned algorithms for fine resolution models has

encountered fundamental difficulties. Optimal estimation depends on a background field and its
solution hinges on the associated error covariance, that is, the background error covariance. Studies
have suggested that a sequence of data assimilations should be applied for a set of decreasing
correlation length scales so that small-scale components of the model solution may be constrained
by assimilating high-resolution observations. Such a sequence of data assimilations has been
applied in both ensemble Kalman filter [6, 7] and 3DVAR [10, 11]. Correlation length scale is a
parameter central to the characterization of background error covariance [18].
Recently, we argued that the optimal estimation formulation for data assimilation is inherently

ineffective when applied to fine resolution models, and that the ineffectiveness arises from the
filtering properties [19]. The filtering properties are dictated by the background error correlation
length scale. A long correlation length scale imposes strong filtering on small scales [20]. In [19],
this ineffectiveness is addressed within the framework of 3DVAR. We will show here that a similar
ineffectiveness occurs in 4DVAR.
By definition, background error covariance is a statistical quantity in the ensemble sense. A

variety of intense, small-scale system types are spatially localized and temporally intermittent which
account for only a limited portion of the total background error covariance. In this study, we present
an analysis of background error correlation length scales using the ‘National Meteorological Center
(NMC) method’ proposed in Parrish and Derber [21]. The results show that the background error
correlation length scales are so large that optimal estimation algorithms are unable to constrain
small scales that are well resolved in models.
To mitigate this ineffectiveness, it has been suggested that the small-scale component should be

separated from the large-scale component and estimated separately, which can be achieved by
decomposing a cost function for distinct scales [19]. We refer to an approach that uses decomposed
cost functions as multiscale data assimilation (MS-DA), in which the data assimilation algorithm
estimates the distinct scales separately. Here, we present a decomposition of the 4DVAR cost
function that is similar to that for 3DVAR.
The outline of this paper is as follows. Section 2 presents a brief description of the formulation of

basic data assimilation within the framework of 4DVAR. In section 3, background error correlation
horizontal length scales are estimated. Section 4 addresses the spectral characteristics of
background error correlations, and illustrates the relation to prescribed correlation length scales.
Section 5 derives an optimal estimation solution based on an idealized two-dimensional (2-D)
problem to illustrate filtering properties of data assimilation. In section 6, a decomposition of the
4DVAR cost function is derived and difficulties in data assimilation for the small-scale component
are addressed. Finally, the summary and discussion are given in section 7.

2. BASIC FORMULATION

To proceed, we describe the basic incremental 4DVAR scheme. Incremental 4DVAR seeks a
solution that minimizes the cost function

J δx0ð Þ ¼ 1
2
δxToB

�1δx0 þ 1
2
∑n

i¼o H iδxi � dið ÞTR�1
i H iδxi � dið Þ; (1)

where δxi ¼ xi � xbi (i=0, 2,⋯,n ) is the increment between the state, xi, and the background/forecast
state, xbi , at time ti from a nonlinear forward model. The increment δxi is governed by
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δxi ¼ L ti; t0ð Þδx0; (2)

where L(ti, t0) is a propagation operator, or simply propagator, which propagates the increment in time
from the initial time t0 to a later time ti through a tangent linear model. We note that L(ti, ti) = I, where I
is the identity matrix. The propagator is a linearized approximation to a nonlinear propagator. This
linearized approximation is known as incremental approximation. The innovation vector is given at
each time step ti by di ¼ yoi �H ixbi , where yoi is the observation vector, Hi the observation operator,
and Ri the error covariance associated with the observation yoi . For more details on incremental
4DVAR, the reader is referred to Courtier et al. [23].
In (1), B is the error covariance associated with the initial background state xb0. B is defined here

because its properties are central to the later discussion. By definition, the background error is

ε ¼ xb0 � xt0; (3)

where xt0 is the unknown true state at the initial time. The background error covariance can be written as

B ¼ hεεT i; (4)

where h � i denotes the ensemble mean or mathematical expectation, and the superscript ‘T’ stands for
transpose.
Following [24], the cost function can be written in the compact form

J δx0ð Þ ¼ 1
2
δxToB

�1δx0 þ 1
2

Gδx0 � dð ÞTR�1 Gδx0 � dð Þ; (5)

where d is a vector that consists of di at all the time steps and has the form d ¼ dT1 ; d
T
2 ; ⋯; dTn

� �T
.

Correspondingly, R is a block diagonal matrix, with each block being Ri. G is a matrix that has the
form G= [(H0L(t0,t0))

T, (H1L(t0,t1))
T, ⋯, (HnL(t0,tn))

T]T.

Letting ∂J δx0ð Þ
∂δx0 ¼ 0, we obtain the following solution that minimizes 5

δxa0 ¼ xa0 � xb0 ¼ BGT GBGT þ R
� ��1

d; (6)

which is known as the analysis increment, and xa0 is the optimal estimate. We can see that B on the left
hand side of the analysis increment acts as a spatial smoothing operator, which will be further
illustrated using the spectral analyses in sections 4 and 5.
We note that the cost function (5) and solution (6) reduce to those for incremental 3DVAR when

the number of the time steps n is set to be zero. Hence, we can use (5) and (6) to discuss properties
of both 3DVAR and 4DVAR.

3. BACKGROUND ERROR CORRELATION LENGTH-SCALE ANALYSES

The background error covariance B can be decomposed into

B ¼ ΣCΣ; (7)

where Σ is a diagonal matrix whose elements are the background error standard deviation associated
with xb0, and C is the correlation matrix whose elements consist of the spatial correlations.
In typical atmospheric and oceanic applications, the dimensions of the state vector are larger than

106. Thus, because of the large dimensions, the correlation matrix cannot be given element-wise
and, to make it computationally feasible to solve, it must be approximately reduced. There are
two approaches to do so. One approach is to reduce the rank or dimensions of the correlation
matrix. For this approach, there are ensemble based methods [25–27], which are currently exten-
sively used [28], reduced-order methods based on Empirical Orthogonal functions (EOFs) [29],
or similarly Proper Orthogonal Decomposition (POD) methods [30–32]. The other approach is to
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parameterize the correlation matrix. Here, we address the spectral representation of the correlations
using parameterized correlations.

3.1. Correlation length scale

Correlation length scale is central to the parameterization of correlation. For a smooth and isotropic
correlation function c at the origin, the correlation length scale is defined in [20] as

LD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

∇2c 0ð Þ

s

in one dimension and

LD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2

∇2c 0ð Þ

s

in two dimensions, where ∇2 is the Laplace operator. By specifying a correlation length scale, a
correlation function can be constructed [18] and, hence, this length scale primarily characterizes the
correlation. We will show how this correlation length scale dictates the spectral characteristics of the
correlation and the filtering properties of optimal estimation.

To illustrate, a frequently used parameterized correlation function is a Gaussian function, c rð Þ ¼ e
� r2

2L2
D,

where r is the distance between grid points, and LD is the correlation length scale. In this case, the
correlation scale is the spatial distance over which the correlation decreases from 1 to e�

1
2 (e is the

base of the natural logarithm). The second-order autoregressive function (SOAR) is also often used
as correlation function [20].

3.2. Correlation length scale analysis

In the introduction, we argue that the background error correlation length scale is generally large
even for a fine-resolution model, because the small scales account only for a limited amount of
background error due to the localized and intermittent nature of small-scale systems. Here, we
present an analysis of correlation length scales to illustrate this point.
In operational 3DVAR/4DVAR, the most widely used method for estimating the background

error covariance B is the ‘NMC method’ detailed in [21]. In this method, the differences, say,
between 24h and 48h forecasts valid for the same time are used as surrogates of the background
error to estimate B. Recently, a B so estimated is often combined with that estimated using
ensemble methodologies, known as ensemble hybrid methods [28, 33]. For B estimated from the
ensemble-based method, the correlation length scale is generally overestimated. We here use only
the NMC method for our analysis.
The data assimilation and forecasting system that is used to produce forecasts used here have

been described in Li et al. [34] and Feng et al. [35]. The Weather Research and Forecast (WRF)
model (version 3.7) is employed using triple-nested domains. The domains are centered roughly
at 36.6N 97.5W, which is the location of the Southern Great Plains (SGP) Site of the Atmospheric
Radiation Measurement (ARM) Climate Research Facility [36, 37]. The grid spacings of the nested
domains are 18km, 6km, and 2km, going from the outer to inner domain. There are 45 vertical
levels with the model top at 100hPa. We set up these model domains to leverage the unique and
dense observations from the ARM Facility. In particular, the inner 2-km domain approximately
encompasses the area of the ARM observing network (Figure 1). A mutliscale 3DVAR
(MS-3DVAR) scheme is implemented based on the Community Gridpoint Statistical Interpolation
(GSI) system (http://www.dtcenter.org). The data assimilation system is executed every 6 h at 00,
06, 12, and 18 UTC. The observations that are assimilated are summarized in Li et al. [34], which
includes conventional and satellite observations processed and distributed by the National Centers
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for Environmental Prediction (NCEP) [22] along with those obtained from the ARM observing
network.
To estimate correlation length scales, twice daily for two months in June and July 2007, we

generated the differences between the 12 and 24 h forecasts that are valid at the same time. From
these differences, spatial correlations are first calculated. The Gaussian function is then fit to the
calculated correlations to estimate correlation length scales. Specifically, the correlation length scale

is computed as LD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� r2

2lnc rð Þ
q

, where c(r) is a correlation coefficient and r is a distance between

the two points. Because the computation is not reliable for c(r) approaching 1 and 0, we compute LD
for 0.4⩽ c(r) ⩽ 0.95.
Figure 2 shows the calculated correlations and correlation length scales at an altitude of about

1.8 km, which is located in the upper boundary layer. Figure 2a1–a3 present for the three model
domains the streamfunction correlations between the ARM Southern Great Plains site and all the
model grid points. The correlation length scales are as large as 240, 120, and 75km, respectively,
for grid spacings of 18, 6, and 2 km (Figure 2c1–c3). The correlation length scales are variable
dependent where, for example, the correlation length scale of moisture is considerably smaller than
that of the streamfunction and velocity potential. Figure 2b1–b3 present the correlations of water
vapor mixing ratio, where the correlation length scales are about 80km, 40km, and 25km for the
three domains (Figure 2c1–c3). We note that the correlation length scales do not decrease linearly
with decreasing model grid spacing. The calculated correlation length scales in Figure 2 are only for
one location, but they represent the model domain averages well. Also, these length scales do not
vary much with altitude from 1000 to 3000m.

4. SPECTRAL REPRESENTATION OF ERROR CORRELATION FOR TWO-DIMENSIONAL
PROBLEMS

The filtering properties of data assimilation are basically the manifestations of the spectral
properties of the background error correlation. For simplicity, we use a horizontal 2-D discrete
problem to illustrate the spectral properties of the background error correlation using bi-Fourier
transforms for a limited area.

4.1. Bi-Fourier transforms of physical fields

A spectral expansion can be applied to a limited-area [38]. For biperiodic lateral boundary
conditions, Fourier transforms are naturally applicable. Practical methods have been developed

Figure 1. The Weather Research and Forecast triple nested domains with grid spacings of 18, 6, and 2 km
going from the outer to inner domain. The blue triangles indicate the locations of the Atmospheric Radiation
Measurement sonde launches and the circles indicate the locations of Surface Meteorological Observation
Systems. The 2-km resolution domain encompasses the enhanced Atmospheric Radiation Measurement

observing network.
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for a limited area with non-periodic lateral boundary conditions; for example, an extension zone can
be used to make the field biperiodic [39].
In the data assimilation formulation as presented in section 2, the state variable is expressed as a

column vector. For a limited area as shown in Figure 3, a discrete 2-D field can be written as a
column vector of length nxny as follows

f ¼ f Tx1; f
T
x2;⋯; f Txny

� �T
;

Figure 3. The two-dimensional grid. There are nx grid points in the x-direction, and ny grid points in the y-direction.

Figure 2. Horizontal correlations and correlation length scales for three model domains at a height of about
1.8 km. The three columns from left to right are for the 18, 6, and 2 km grid spacing domains. The corre-
lations for the streamfunctions between the location of the Atmospheric Radiation Measurement Southern
Great Plains site and all model grid points are in the top row (a1–a3), and the correlations for water vapor
mixing ratio are in the middle row (b1–b3). The correlation profiles across the Atmospheric Radiation

Measurement Southern Great Plains site, from south to north, and the corresponding estimated correlation
scales are given in the bottom row (c1–c3). In c1–c3, the blue curves are horizontal correlations, and the red
curves are the estimated horizontal correlation length scales for correlations between 0.4 and 0.95. Solid

curves are for the streamfunction, and dotted curves are for water vapor mixing ratio.

1040 Z. LI ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 82:1035–1048
DOI: 10.1002/fld



where fxj (j=1, 2,⋯, ny) is a column vector of length nx that encompasses the grid points along the j-th
row. We also denote fyi (i=1, 2,⋯,nx) as a column vector of length nx that encompasses the grid points
along the i-th column.
With the definitions given above, the 1-D Fourier transforms can be written as

fsj ¼ Fx fxj and fsi ¼ Fy fyi (8)

for the x-direction and y-direction. Here the Fourier transform matrix Fx is an nx× nx matrix, and the
Fourier transform matrix Fy an ny× ny matrix.
From the 1-D Fourier transforms for the x-directions and y-directions, we obtain the bi-Fourier

expansion for a 2-D field in the form

fs ¼ Fx⊗Fy
� �

f ; (9)

where fs is an nx× ny vector. The m× n-th element of fs, fs(m,n), is the Fourier coefficient at a
wavenumber of m in x-direction and a wavenumber of n in y-direction. Here ⊗ denotes a tensor
product, also known as Kronecker product (Appendix B).
By definition, the covariance in spectral space is fs f

T
s . Following (9), we have

fs f
T
s

� � ¼ Fx⊗Fy
� �

f f T
� �

Fx⊗Fy
� �T

: (10)

4.2. Spectral representation of the background error correlation

The spectral properties of the background error correlation can be related to the classic Wiener–
Khintchine theorem [40]. The theorem states that the autocorrelation function of a wide-sense-
stationary random process has a spectral decomposition given by the power spectrum of that
process. It means that the power spectrum of a process is equivalent to the autocorrelation function.
For one-dimensional (1-D), infinite domains that have homogenous and isotropic spatial
correlations, the Wiener–Khintchine theorem implies that the specification of the spatial correlation
function of a random field is equivalent to the specification of its power spectral density (PSD).
The expansion of meteorological fields in terms of spherical harmonics has been used in

operational global variational assimilation schemes, such as in the Spectral Statistical Interpolation
(SSI) system at NCEP (former the NMC) [21, 22] and the 3DVAR system at ECMWF [41]. Assum-
ing homogeneous and isotropic conditions, in spectral space the background error covariance is
simply the variance for each wavenumber, that is, the PSD.
For homogeneous background errors, the spectral representation of the covariance matrix B is

equivalent to that of the correlation matrix C. We here consider a particular context where C is sep-
arable in the x-directions and y-directions. In this context, the 2-D correlation can be expressed as

C ¼ Cx⊗Cy; (11)

where Cx and Cy are 1-D correlations in the x-directions and y-directions. The expression in (11) has
been used in the construction of the background error correlation [42, 43].
Following (10) and (11), the correlation matrix in the spectral form is

S ¼ Fx⊗Fy
� �

Cx⊗Cy
� �

Fx⊗Fy
� �T

: (12)

Using the Kronecker product relations (B2) and (B3), we obtain

S ¼ FxCxFT
x

� �
⊗ FyCyFT

y

� �
¼ Sx⊗Sy; (13)

where Sx and Sy are the spectral transformations of the 1-D correlation matrices Cx and Cy, respectively.
For isotropic correlations, Sx and Sy are diagonal and their diagonal elements are the PSD of each

wavenumber in the x-directions and y-directions. Following (13), we determine from the Kronecker
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product property (Appendix B, equation B.5) that S is diagonal, and its diagonal elements consist of
the 2-D PSD. The equivalent to (13) has been obtained for a global domain in Boer [44], where
spherical harmonics are used for Fourier transforms. We use the equality (13) to examine the
relationship between correlation scale and PSD.
To illustrate, we assume that the correlation function is a Gaussian function and the diagonal

elements of Sx and Sy are calculated using (A.7). In Figure 4a and b, the PSD is given as a
function of the wavenumber in the x-directions and y-directions for correlation length scales of
50 and 25km.
A comparison between Figure 4a and b reveals that the PSD at small scales declines more quickly

for the larger correlation scales. For a correlation length scale of 50 km, the PSD decreases to be less
than 10� 2 at a wavelength of 100km and to 10� 5 at a wavelength of 70km. In contrast, for a
correlation length scale of 25km, the PSD decreases to be less than 10� 2 at a wavelength of
50km and to 10� 5 at a wavelength of 35km. Overall, the PSD decreases to 10� 2 at a wavelength
that is twice the correlation length scale. We note that the PSD is constant for uncorrelated
background errors and, thus, the decrease of PSD with spatial scale arises solely from the
correlation.
The rapid decrease of PSD with decrease in spatial scale is responsible for the inability of data

assimilation to correct small-scale background errors. To illustrate, we examine the background
term of the cost function, the first term in (1). The ratio rnc between the components for
wavenumbers larger than a chosen wavenumber nc and those smaller than or equal to nc is given by

rnc ¼ ∑n>nc∑m>ncPSDmn=∑n⩽nc∑m⩽ncPSDmn; (14)

where PSDmn denotes the PSD for wavenumber m in the x-direction and n in the y-direction. When
nc is given such that the corresponding wavelength is larger than twice the correlation length scale,
rnc becomes virtually zero, and the small-scale components cannot be accounted for in the
background term.

Figure 4. Power spectral density (PSD) of the background error and the scaling coefficients, which scale the
PSD of the innovation to produce the PSD of the analysis increment of each wavenumber. For correlation
length scales of 50 and 25 km, the PSDs are given in (a) and (b) and the scaling coefficients in (c) and (d).

The PSDs and scaling coefficients are both standardized.
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5. FILTERING PROPERTIES

To further illustrate the inability of the data assimilation to correct small-scale background errors,
we examine analytical solutions. We analyze a 2-D problem without the vertical and time
dimensions. In this analysis, we assume again that the background errors are homogeneous and
isotropic, and that there is one observation at each grid point. Under these assumptions, the solution
in (6) reduces to

xa0 ¼ xb0 þ B Bþ Rð Þ�1d (15)

Applying the bi-Fourier transform to both sides of (15) yields

Sx⊗Sy
� �

xa0 ¼ Sx⊗Sy
� �

xb0 þ Sx⊗Sy
� �

B Sx⊗Sy
� �

Sx⊗Sy
� ��1

Bþ Rð Þ�1 Sx⊗Sy
� ��1

Sx⊗Sy
� �

d; (16)

In (16), we used the relationship (Fx⊗Fy)(Fx⊗Fy)� 1 = I. Using the Kronecker product property
(B.4) and (13), we obtain from (16)

sa0 ¼ sb0 þ Sx⊗Sy
� �

Sx⊗Sy
� �þ σo2

σb2
I

	 
�1
sd; (17)

where sa0 ¼ Sx⊗Sy
� �

xa0 contains the spectral coefficients of the analysis, s
b
0 ¼ Sx⊗Sy

� �
xb0 contains the

spectral coefficients of the background field, and sd= (Sx⊗Sy)d contains the spectral coefficients of the
innovation. Further, σb2 and σo2 are the background and observation error variances, respectively.
In (17), the matrix that multiplies sd is

K ¼ Sx⊗Sy
� �

Sx⊗Sy
� �þ σo2

σb2
I

	 
�1
: (18)

It is the Kalman gain [45] that, here, is a diagonal matrix. The elements of this matrix are the scal-
ing coefficients that scale the spectral coefficients of the innovation to yield the spectral coefficients
of the analysis of each wavenumber.
From the gain matrix K, we can quantitatively illustrate the filtering properties associated with the

background error correlations given in section 4. Here we specify σo2
σb2 ¼ 0:25, that is, the magnitude

of the observational error is half the background error. Figure 4c and b present the scaling coeffi-
cients of each wavenumber for correlation length scales of 50 and 25 km. For a correlation length
scale of 50 km, the scale coefficient approaches 10� 4 at a wavelength of 100 km. For a correlation
length scale of 25 km, the scale coefficient approaches 10� 4 at a wavelength of 50 km. We note that
σo2
σb2 ≈1 is generally used in operational applications and, thus, the scaling coefficients are even
smaller. From such scaling coefficients, we conclude that the component of the analysis increment
is virtually zero at least for scales less than twice the background error correlation length scale.

6. MULTISCALE DATA ASSIMILATION METHODOLOGIES

In section 3, the analyses show that the correlation length scales are as large as 75km for the
streamfunction and 25km for moisture mixing ratios, even for a model with a grid spacing of
2 km. Because data assimilation cannot correct the background errors for scales less than at least
twice the correlation length scale, current data assimilation methodologies are, thus, ineffective at
constraining small-scales.
To mitigate this issue, the large and small scales should be decomposed and estimated separately,

as mentioned before. In 3DVAR, this is achieved by decomposing the cost function for distinct
scales [19]. We call the resulting scheme MS-3DVAR. Following MS-3DVAR, we here decom-
pose the 4DVAR cost function (5).
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To proceed, we decompose the increment for two distinct scales as

δx0 ¼ FLδx0 þ FSδx0 ¼ δx0L þ δx0S ; (19)

where δx0L and δx0S denote the large-scale and small-scale components of δx0, respectively, and the
two bi-Fourier expansion operators satisfy FL+FS =I.
Correspondingly, the decomposition of the background error can be written as

ε ¼ FLεþ FSε ¼ εL þ εS ; (20)

where εL and εS are the large-scale and small-scale components of the background error, respectively.
From (20), we have

B ¼ εLεTL
� �þ εSεTS

� � ¼ BL þ BS; (21)

where BL and BS are the error covariances associated with xb0L and x
b
0S. To obtain (21), we have assumed

that the large-scale and small-scale background errors are uncorrelated.
With the decompositions in (20) and (21), the cost function in (5) can be decomposed into two

cost functions

J δx0Lð Þ ¼ 1
2
δxToLB

�1
L δx0L þ 1

2
Gδx0L � dð ÞT GBSGT þ R

� ��1
Gδx0L � dð Þ; (22)

J δx0Sð Þ ¼ 1
2
δxToSB

�1
S δx0S þ 1

2
Gδx0S � dð ÞT GBLGT þ R

� ��1
Gδx0S � dð Þ: (23)

The decomposed cost functions (22) and (23) can then be used to estimate the large-scale and
small-scale components separately, and the resulting algorithm is a multiscale 4DVAR
(MS-4DVAR).
The cost function (22) actually represents a basic incremental 4DVAR [23], or 3DVAR if no time

dimension is considered, that is, n=0 in (1). In (22), there is an additional component, GBSGT, in
the observation error covariance. This component results from representativeness errors, referred
to as multi-scale representativeness errors [19].
The solution obtained by minimizing (23) is the small-scale analysis increment. In (23), BS

generally has small variances, but its correlation length scales could be large. This is because BS

involves an ensemble and/or domain mean. Even in the case where there are intense small-scale
activities, BS may still have limited variances and large correlation length scales, due to the
temporally intermittent and spatially localized characteristics of small-scale systems. In practice,
an inflation and localization of BS is needed.
We note that the innovation d in (22) and (23) is not decomposed. Some high-resolution

observations can be decomposed and they can then be assimilated. In this case, the multi-scale
representativeness errors are removed [19].

7. SUMMARY AND DISCUSSION

The currently used data assimilation algorithms are primarily formulated within the framework
of optimal estimation theory [14, 46]. In these algorithms, a background state is used, and a data
assimilation algorithm can be described as correcting the background error in terms of maximum
likelihood or minimum error variance estimates. The associated background error covariance
functions in three primary ways: it filters out observation errors, spreads observational informa-
tion in space and time, and incorporates dynamic balance for propagating observational
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information among state variables. These three functions of the background error covariance
play a key role in the data assimilation.
However, as numerical model resolutions increase to resolve cloud systems in the atmosphere or

to resolve sub-mesoscale systems in the ocean, fundamental difficulties arise from the use of the
background error covariance. One major difficulty is that its filtering effect precludes optimal
estimation algorithms from constraining small scales using high-resolution observations. We
analyzed this difficulty in 3DVAR in [19] and here in 4DVAR.
The background error covariance is mainly characterized by its correlation length scale. We

analyzed correlation length scales using the ‘NMC’ method [21]. The results show that correlation
length scales are as large as 75km for the streamfunction and are larger than 25 km for moisture
mixing ratios, even though the model has a grid spacing of 2 km.
Such large correlation scales suggest that data assimilation algorithms for 3DVAR and 4DVAR

cannot correct background errors at small scales. Specifically, background errors cannot be
corrected at scales less than at least twice the correlation length scales. In terms of the estimated
correlation scales, data assimilation algorithms do not correct background errors for scales less than
150km in the streamfunction fields and 50km in the moisture fields, even though fine resolution
observations are available to assimilate. Of course, the estimated correlation scales are determined
by multiple factors, such as the model used, effectiveness of data assimilation, and particular
observations assimilated.
The inability of the currently used data assimilation algorithms to constrain small scales suggests

the need to adjust or even reformulate them. We propose decomposing the cost functions for
distinct spatial scales and implement data assimilation separately for each distinct spatial scale. In
[19], we derive a decomposition of the 3DVAR cost function for large and small scales. Here the
decomposition has been extended to the 4DVAR cost function. For the large-scale component,
we can simply use existing data assimilation algorithms. For the small-scale component, however,
we argue that the maximum likelihood or minimum error variance estimates may not be suitable
because the small scales account for a very limited amount of the error variance.
We have implemented a MS-3DVAR for oceanic applications [47]. In this MS-3DVAR, the data

assimilation for the small-scale component follows the framework of conventional 3DVAR, but the
correlation length scale is empirically reduced. For MS-4DVAR, it is straightforward to use a basic
4DVAR system for the large-scale component. For the small-scale component, it is also possible to
use a basic 4DVAR system, but major adjustments are necessary.
For small-scales, the Rossby number is larger than one so nonlinear advection is important; also,

an energetic small-scale system is often associated with convection that is nonlinear. Thus,
small-scale systems are more nonlinear and non-Gaussian than large-scale systems. The nonlinear
and non-Gaussian issue could be alleviated to some degree in MS-DA because the increment for
small scales is smaller in magnitude than the total increment for all scales. While modifying a
currently used data assimilation algorithm such as MS-DA to constrain small-scales should
continue to be attractive in a practical sense, we note that non-Gaussian and nonlinear data
assimilation algorithms such as particle filters [48–50] are worth exploring.

APPENDIX A. SPECTRAL TRANSFORMATION OF ONE-DIMENSIONAL COVARIANCE

Consider a 1-D problem in the x-direction. The background error has the Fourier expansion

ε xð Þ ¼ 1
Lx

∑M
m¼�M εme

i2πmx=Lx ; (A:1)

where Lx is the length of the 1-D interval, and the Fourier coefficient at wavenumber m is

εm ¼ ∫
Lx

0 ε xð Þe�i2πmx=Lxdx: (A:2)
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From (A.1) and (A.2), we can have

∫
Lx

0 ε
2 xð Þdx ¼ 1

Lx
∑M

m¼�M εmε
�
m: (A:3)

The equality (A.3) is the well-known Parseval’s theorem [40].
The covariance between the Fourier coefficients at wavenumbers m and n can be written as

εmh iε�n ¼ ∫
Lx

0 ∫
Lx

0 ε x1ð Þε x2ð Þh ie�i2πmx1=Lxei2πnx2=Lxdx1dx2 (A:4)

For homogeneous and isotropic background errors, the covariance has the symmetric property

ε x1ð Þε x2ð Þh i ¼ c x1 � x2ð Þ ¼ c x2 � x1ð Þ (A:5)

Using the symmetry (A.5), we can obtain from (A.4)

εmε�n
� � ¼ ∫

Lx

0 Lx � xð Þc xð Þe�i2πx=Lxdτ; m ¼ n
0; m≠n

(
(A:6)

(A.6) shows that the spectra at distinct wavenumbers are not correlated.
From (A.3), the spectral power density is sm ¼ 1

Lx
εmε�m
� �

. When the correlation length scale LD is
much smaller than Lx, that is, LD/Lx≪1, we can obtain from (A.6)

sm≈∫
Lx

0 c τð Þe�i2πmτ=Lxdτ (A:7)

(A.7) is simply the manifestation of the classic Wiener–Khintchine theorem.

APPENDIX B. PROPERTIES OF KRONECKER PRODUCT

Let A be an m×n matrix and B a p× q matrix. The Kronecker product (or tensor product) of A and B is
then defined as the matrix

A⊗B ¼
a11B ⋯ a1nB
⋮ ⋱ ⋮

am1B ⋯ amnB

" #
; (B:1)

which is an mp× nq matrix. The same definition holds if A and B are complex-valued matrices.
A comprehensive discussion on properties of the Kronecker product operator can be found in

Graham [51]. The relations that have been used are as follows:

A⊗Bð Þ C⊗Dð Þ ¼ AC⊗BD; (B:2)

A⊗Bð ÞT ¼ AT⊗BT ; (B:3)

A⊗Bð Þ�1 ¼ A�1⊗B�1; (B:4)

A⊗B is diagonal if A and B are diagonal. (B.5)
In these relations, we assume that the dimensions of the matrix are appropriately defined for all

matrix operations.
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